2018年 第48卷 第9期: 1058~1075

chemcn.scichina.com

CrossMark

评 述

庆祝中国科学技术大学成立60周年专刊

金属有机框架材料在光催化中的应用

肖娟定^{1,2},李丹丹¹,江海龙^{1*}

1 中国科学技术大学化学系,中科院软物质化学重点实验室,苏州纳米科技协同创新中心,合肥微尺度物质科学国家研究中心,合肥 230026 2 中国科学院核能安全技术研究所,中子输运理论与辐射安全重点实验室,合肥 230031 *通讯作者, E-mail: jianglab@ustc.edu.cn

收稿日期: 2018-03-01; 接受日期: 2018-05-22; 网络版发表日期: 2018-08-08 国家重点基础研究发展规划(编号: 2014CB931803)、国家自然科学基金(编号: 21725101, 21673213, 21701160, 21521001)和中国博士后科学基 金(编号: 2016M602018)资助项目

摘要 金属-有机框架材料(metal-organic frameworks, MOFs)是一类基于金属离子与有机配体组装而成的配位 多孔材料,具有高比表面积、多活性位点、结构可剪裁、易功能化等特征.相当一部分MOFs能够表现出类半导体的行为,其有序结构不利于光生电子-空穴复合中心的产生,同时其多孔特性更是便于光生载流子的快速/高效 利用.因此,近年来MOFs材料在光催化领域受到越来越广泛的关注与研究.本文从光催化反应类型出发,包括光 催化染料降解、光催化有机物转化、光催化裂解水产氢、光催化水氧化、光催化二氧化碳还原反应等,总结了 近年来MOFs及其复合催化剂设计合成及在光催化领域的应用研究进展,同时简要介绍了部分MOF衍生材料在 光催化领域的应用,并对MOFs材料在光催化领域的应用前景进行了展望.

关键词 金属-有机框架材料,光催化,水裂解,二氧化碳还原,有机物转化

1 引言

能源短缺和环境污染是进入新世纪人类面临的关键问题,而开发新能源,如风能、太阳能、核能等^[1,2] 是应对这一问题的主要途径.光催化是一项利用太阳 能来解决目前全球能源短缺和环境危机的重要手段. 半导体的能量带隙通常介于1~5 eV,落在太阳光能谱 范围内,因而作为传统催化剂被广泛应用于光催化研 究.太阳光谱主要集中在可见光部分,紫外光仅占4%, 其他为红外光,所以发展具有长波长吸收的光催化材 料具有重要的意义^[3,4].大量文献报道表明,针对经典 半导体材料如CdS、ZnO等,通过构建异质结、肖特 基结或Z系结构可以提高电子空穴分离效率,从而提高半导体材料的光催化活性^[5-7].近年来,为了进一步提升光催化活性,不同结构类型的类半导体光催化剂也相应被开发出来,特别是多孔材料,在光催化领域呈现出迷人的前景,光催化剂的多孔结构允许暴露尽可能多的反应活性位点,并通过减少扩散阻力促进反应底物与活性位点的接触;更重要的是,多孔结构丰富的内表面使得光生电子和空穴的传输距离大大缩短,一定程度上避免了光催化过程中的体相复合,从而提高光生电子和空穴的分离和利用效率,大大改善光催化性能^[8-12].与此同时,作为近年来化学和材料领域最热门的研究领域之一,金属有机框架材料(metal-

引用格式: Xiao JD, Li D, Jiang HL. Metal-organic frameworks for photocatalysis. Sci Sin Chim, 2018, 48: 1058-1075, doi: 10.1360/N032018-00035

organic frameworks, MOFs)由于其独特的结构优势,如 多孔性、结构可调节性、可功能化等,有助于研究者 从分子层面来理解光催化反应、从结构层面来设计光 催化剂,因此成为光催化领域的重要研究对象.

由金属离子或金属簇合物与有机配体自组装形成 的MOFs是一类较新颖的多孔晶态固体材料、一般具 有高孔隙率、高比表面积、结构可剪裁性、易功能 化、多活性位点等优点,在气体存储与分离、分子传 感、光电材料、药物载体、催化等领域已经展现了重 要的应用前景^[13~19],在MOFs的功能应用中,光催化是 近年来迅速发展的领域之一(图1). 相当多的MOFs能 够表现出类半导体的行为^[20];光照条件下,当光子能 量大于或等于MOFs的能带间隙时, MOFs受到光激发 能够产生光生电子和空穴、其中电子会被激发至最低 未占轨道(lowest unoccupied molecular orbital, LUMO) 上, 而空穴则留在最高已占轨道(highest occupied molecular orbital, HOMO)上,从而发生电子-空穴的分离, 之后电子或空穴会继续迁移至MOFs光催化剂的表面 分别进行光催化还原或氧化反应,也即发生光生电子 和空穴的分离及再利用的过程. 所以一般说来, 提高 电子-空穴对的生成量、分离效率及载流子的利用效 率是增强MOFs光催化活性的重要途径.

相比于传统的半导体光催化材料, MOFs作为光催 化剂在提高电子-空穴对的生成、分离和利用方面存 在如下潜在优势: (1) MOFs具有高度的结构可设计性: 通过向MOFs中引入长波长吸收基团作为有机桥连配 体(如氨基、金属配合物、卟啉等), 增强MOFs光吸收, 实现MOFs的可见光甚至近红外光催化、增加太阳光 照下电子-空穴对的产生数量; (2) MOFs的多孔性: 多 孔结构赋予MOFs更多暴露的活性位点和催化底物/产 物传输通道,利于光生电荷快速转移和利用,从而有效 减少电子-空穴在光催化材料体相中的复合,综合提高 其利用效率; (3) MOFs的结晶性特征: 结构缺陷经常是 光催化材料光生电子-空穴的复合中心, 而绝大多数 MOFs是具有结晶性的、MOFs完美的晶态有序结构有 利于减少光生电子和空穴的复合; (4) MOFs复合物结 构多样性: MOFs易结合其他化合物, 如染料等光敏 剂、Pt等共催化剂等,形成异质结构或肖特基结构,促 进光生电子-空穴的生成与分离; (5) MOFs明确、可剪 裁的结构特点使其成为研究光催化构效关系的理想模 型等.

本文从MOFs参与的光催化反应类型出发,总结了 近年来MOFs及其复合材料在光催化染料降解、光催 化有机物转化、光催化裂解水产氢、光催化裂解水产 氧、光催化二氧化碳还原等领域的应用研究进展.此 外,还简要介绍了部分MOFs衍生材料在光催化领域 的应用.最后,对MOFs材料在光催化领域的研究进行 了简要的展望.

2 MOF光催化有机物转化

2.1 MOF光催化有机染料降解

如今很多地区正在面临严重的水污染,其中有机 染料的污染问题十分严重.有机染料化学性质稳定且 生物降解性差、有毒、有致突变和致癌的可能,开发 有效、经济的技术来处理这些有机污染物十分必要. 光催化提供了在温和条件下使用可再生太阳能促进反 应的可能性,所以是一种非常有效的染料降解方式,在 世界范围内引起广泛关注.

染料的光催化降解本质上是染料分子与光催化过 程中产生的羟基自由基(·OH)的化学反应, 最终被氧化 分解为无机物如CO2、H2O等,其光催化活性与反应体 系的pH、溶剂、是否含有H₂O₂等影响·OH数量的因 素有关. 绝大多数具有光活性的MOFs都可以用作光 催化降解有机染料的催化剂, Wen等^[21]报道了6种分别 基于Cu、Mn、Zn、Cd的MOF框架可用于不同有机染 料的降解. Qian和Chen等^[22]合成了含Zn₄O簇双重穿插 结构的MOF材料UTSA-38、并研究了其光催化降解次 甲基橙的性能.他们认为,UTSA-38受到光激发产生 光生电子-空穴对; 电子和空穴迁移到UTSA-38的表 面,然后转移到被吸附的表面物质上,其中电子将氧 气(O₂)还原成氧自由基(·O₂⁻),最后转化成·OH;反过 来、空穴将H₂O氧化成·OH、而·OH具有有效分解甲基 橙的能力. 所以光照过程产生的·OH是光催化降解染 料活性的关键.研究人员通过向光催化体系中添加 H₂O₂来提升·OH含量,从而增强光催化活性.Xiao等^[23] 研究了g-C₃N₄/NH₂-MIL-88B(Fe)光降解活性与H₂O₂的 关系,表明H₂O₂可以直接接受来自MOF的光生电子生 成·OH,并参与到后续光降解次甲基蓝的反应中.

很多MOFs与其他半导体的复合材料被报道用于 光催化有机染料的降解. 半导体-MOF复合结构的光催 化机理可概括为两个方面: (1) 具有明确晶体结构的

图 1 2005~2017年间MOF光催化的相关文献,以"metal-organic framework"和"photocatalysis or photocatalytic or photocatalyst"为关键词在web of knowledge搜索,数据更新到2018 年1月(网络版彩图)

Figure 1 Number of papers for MOF photocatalysis reported during 2005~2017. Topic keywords "metal-organic framework" and "photocatalysis or photocatalytic or photocatalyst" searched from web of knowledge, data updated by January, 2018 (color online).

MOFs可作为光敏剂,导致有效的光捕获和光接触面 积的扩大; (2) MOFs作为光催化剂, 光生电子可以容 易地从MOF中的有机配体转移到金属簇(LCCT); (3) MOFs和半导体分别用作光催化剂. Luo等^[24]合成了 TiO₂/ZIF-8的纳米纤维,通过N掺杂成功地向该材料引 入可见光催化活性,因界面处具有很强的N-Ti-O化学 键合作用,这种键合促进光生电子-空穴的分离,最后 选择罗丹明B为代表性染料分子、实现了很好的光降 解效果. Li等^[25]将上转换纳米颗粒(UCNPs)与MOF整 合建立起一种近红外光(NIR)响应的复合光催化剂.通 过调节UCNPs表面MOF壳的厚度、来调节NIR照射下 表现出的光降解染料的催化活性.此外,通过添加NH, 基团,可以将MOF壳的吸收延伸至可见光区,使得复 合光催化剂更好地利用上转换和太阳能来改善其活 性、该工作为未来如何进一步拓宽MOF复合材料的光 吸收提供了新的可能和依据.

2.2 MOF光催化有机反应

最初基于半导体光催化的研究聚焦于产氢和有机 污染物的降解,由于使用光能来催化生产有价值的有 机化合物是一项绿色工艺并能减少与化学工业有关的 环境污染,所以研究人员也越来越重视光诱导的有机 转化反应.光催化有机转化的类型包括:(1)醇、胺、 烯烃、烷烃和硫化物的氧化;(2)芳族化合物如苯的羟 基化;(3)C-H的活化;(4)原子转移自由基聚合(ATRP) 等^[26].

在单一MOF材料中光敏剂与不对称催化剂的恰 当组合可实现基于MOF的立体选择性光催化. He和 Duan等^[27]选用手性催化剂PYI (*L*- or *D*-pyrrolidin-2ylimidazole)与光敏性有机配体桥连合成了两种对映 体MOFs: Zn-PYI1和Zn-PYI2,并用于醛的不对称α-烷 基化反应. 由于尺寸和空间效应,这些手性MOFs可以 促进异构不对称转换,对脂肪醛的不对称烷基化反应 具有良好的收率和对映选择性(图2). 最近, Zhang等^[28] 报道的几种基于Zn、Zr、Ti的手性MOFs同样对醛的 不对称α-烷基化具有很好的光催化活性.

因为醛和酮是许多有机合成的重要起始原料、所 以醇及其衍生物氧化成相应的醛是有机合成中最重要 的反应之一. 例如,利用后合成策略在NH₂-MIL-125 (Ti)上修饰染料分子甲基红可以拓宽MR-MIL-125(Ti) 复合材料至可见光吸收,从而提高对太阳光的利用 率^[29]. 与NH₂-MIL-125(Ti)相比, MR-MIL-125(Ti)更强 的光吸收使其在苯甲醇光催化氧化生成苯甲醛的反应 中表现出更优异的性能. Rozes和Mellot-Draznieks等^[30] 发现MIL-125-NH,中BDC-NH,的化学计量比对光催化 氧化苯甲醇到苯甲醛有重要影响.他们将0%、20%、 46%、70%以及100%的BDC-NH₂加入到MOF框架中, 稳态反应速率揭示当MOF框架中的BDC-NH,含量增 加至50%时光催化速率达到最高、继续增加不再发生 明显变化. 这种意想不到的"饱和状态"表明, 不需要 将MOF的所有连接体进行氨基化就可获得最大的光 催化活性. 这是由于电子从BDC-NH2转移至Ti-O簇后 将Ti⁴⁺还原为Ti³⁺并形成Ti³⁺-Ti⁴⁺混合电子对(50%时达 到最多),产生的静电力限制了额外的BDC-NH。参与电 子转移生成Ti³⁺催化活性中心. Jiang等^[31]报道了Pt/ PCN-224(M)的合成,其中Pt纳米晶和MOF中卟啉单元 协同促进单线态氧¹O₂的产生,还共同诱发促进光热效 应,大大有利于苯甲醇及其衍生物的选择性氧化反应; 不仅如此、通过改变入射光强度调节Pt纳米晶的等离 激元共振效应以及Pt/MOF之间的肖特基结两者间的 竞争,从而操纵Pt表面的电子态,进一步优化催化反应 性能,最终实现室温、常压分子氧条件下100%的苯甲 醇及其衍生物的选择性氧化到相应的醛(图3). 其他光

辅助选择性氧化醇生成醛的MOFs及其复合物包括 MIL-125^[32]、CdS-MIL-100(Fe)^[33]、Zr-MOFs^[34]、Ni掺 杂的NH₂-MIL-125(Ti)^[35]、MIL-53(Fe)-graphene^[36]、 PANI/FeUiO-66^[37]等.

胺的选择性氧化生成相应的亚胺是有机化学中最 重要的官能团转化之一.如在不同条件下,通过NH₂-MIL-125(Ti)光催化剂可以实现需氧氧化苄胺成为*N*-亚苄基苄胺^[38].通过光催化氧化耦合从低反应性sp³ C-H键直接形成新的C-C键,使用环境友好和廉价的 氧气作为氧化剂,是可持续化学的一个重要领域^[39]. Duan等^[40]通过溶剂热的方法将由4,4'-联吡啶(4,4'-bipyridine, BPY)、Cu(NO₃)₂·3H₂O、[SiW₁₁O₃₉Ru(H₂O)]⁵⁻ 混合反应得到光活性的CR-BPY1材料,将光催化与Cu 位点催化整合到特定的MOF框架中,最后实现氧化C-C形成(图4).光照24 h后通过CR-BPY1的催化可获得 交联偶联产物,收率为90%,而在黑暗中进行反应时没 有观察到转化,在不存在催化剂的情况下仅观察到低

图 2 光活性的手性Zn-PYI对脂肪醛的不对称烷基化反应示意图^[27] (网络版彩图)

Figure 2 Photoactive Chiral Zn-PYI for light-driven asymmetric α -alkylation of aldehydes [27] (color online).

图 3 光增强的Pt/PCN-224(M)催化苯甲醇氧化示意图^[31] (网络版彩图)

Figure 3 Schematic illustration showing the selective oxidation of alcohols over Pt/PCN-224(M) using molecular oxygen under visible-light irradiation [31] (color online).

图 4 CR-BPY1催化C-C键的形成示意图^[40] (网络版彩图) Figure 4 Schematic illustration showing the controlled trials for the C-C coupling reaction of CR-BPY1 [40] (color online).

转化率.所有可用的数据表明,N-苯基四氢异喹啉和 硝基甲烷之间的偶联实际上是由光催化引发的,且 CR-BPY1是用于氧化偶联稳定的非均相催化剂.

部分高分子聚合反应需要受到光引发,Nguyen 等^[41]研究了MOF-902在α-溴代苯乙酸乙酯作为共引发 剂情况下,可见光催化甲基丙烯酸甲酯(methyl methacrylate, MMA)、甲基丙烯酸苄酯(benzyl methacrylate, BMA)、苯乙烯(styrene, St)等不同单体的聚合反应. 这 是由于MOF-902中更长的有机链使得MOF框架的共 轭性更强,从而使得光吸收红移.MOF-902可以在聚合 转化过程中提供具有更高分子量和低分散指数的聚合 物产物,且光催化效率明显优于MOF-901、UiO-66、 UiO-66-NH₂、MIL-125(Ti)、MIL-125-NH₂(Ti)和P25-TiO₂等.

其他光催化氧化或还原型有机反应的报道还有很 多,不再一一详细介绍,现将部分MOF基光催化剂及 相关的催化反应类型列举如下:UiO-66-NH₂用于醇 类、烯烃和环状烷烃的选择性有氧氧化^[42];卟啉框架 UNLPF系列MOFs用于光催化硫化物的选择性氧化、 芳基硼酸的有氧羟基化、胺偶联和曼尼希反应^[43,44]; MIL-100(Fe)和MIL-68(Fe)用于光催化选择性苯羟基 化成苯酚^[45];Zn-PDI用于光催化芳基卤化物的还原^[46]; Pd@MIL-100(Fe)用于光催化N-烷基化^[47];Pd@NH₂-UiO-66(Zr)用于铃木偶联反应^[48];HKUST-1、MIL-53 (Al)、MIL-53-NH₂(Al)、UiO-66、UiO-66-NH₂和MIL-125(Ti)等光催化制备*N*-羟基-唑烷酮^[49];MIL-68(In)-NH₂/GrO用于光催化芳基硼酸的有氧氧化^[51]等.

3 MOFs光催化裂解水

3.1 MOFs光催化裂解水制氢

H₂是绿色可再生能源,是满足未来能源需求的最 理想燃料.由于地球上水资源丰富,用裂解水的方式 制备H₂为达到人类能源目标提供了潜在的可能,而利 用太阳能光催化是裂解水制氢的最佳方法,具有足够 的吸引力和竞争性.MOFs作为光催化剂具有多种优 点,如设计灵活性、孔道可调、大的比表面积、易官 能化以及结构丰富.在MOFs中被有机连接基团分开 的金属中心被认为是超分散金属量子点,可以实现光 催化反应过程中电荷载体的短距离扩散^[52].通过调整 有机配体和/或金属中心离子,可以调整MOF的比表面 积和带隙,从而控制其光催化活性以使其性能最优化. 通过多个组分复合,如将碳氮化合物、金属纳米颗 粒、金属氧化物、金属配合物或多金属氧酸盐(polyoxometalate, POM)与MOFs结合可直接用于光催化 反应.

3.1.1 纯MOFs光催化裂解水制氢

纯MOFs中的光生电子和空穴极易复合, 光催化活性十分有限, 所以利用纯MOFs进行光催化裂解水制氢的研究很少见, 大部分纯MOFs的光催化活性都需要反应体系中有光敏剂或Pt等共催化剂才能体现出来.最近, Devic等^[53]通过选用有机配体2,5-二羟基对苯二甲酸(2,5-dihydroxyterephthalic acid, H₄DOBDC)合成了Ti系列MOFs材料: MIL-167、MIL-168、MIL-169和"NTU-9-like",该有机配体的引入使MOFs具有显著增强的可见光吸收,实现了纯MOFs可观的光解水制氢活性. Cu-X-bpy^[54]、Cd-MOFs^[55]和Cu-MOFs^[56]最近也被报道可以单独用作光催化材料并获得较好的光催化产氢效果.

3.1.2 MOF复合物光催化裂解水制氢

(1) 金属纳米粒子-MOF

纯MOF光催化产氢效率低,一般需要辅以贵金属 纳米颗粒(nanoparticles, NPs, 如Pt等)作为共催化剂,以 引导电子流向,实现光催化剂电子和空穴的快速分离, 从而有效提高电子利用率及光催化效率;所以,许多 MOF的高效光裂解水制氢效果都基于贵金属共催化 剂的协助^[57-63]. Matsuoka等^[64]合成了Ti-MOF-NH₂,并 且运用光沉积手段成功担载Pt NPs,得到Pt/Ti-MOF-NH₂并表现出优异的光催化制氢性能.他们提出光催 化反应中电子转移遵从LCCT (linker to-cluster charge-transfer)过程,即Ti-O簇的导带(conduction band, CB) 可以接受来自激发态氨基对苯二羧酸配体的有效电荷 转移,如图5(a)所示,Pt作为共催化剂接受来自Ti-O簇 的电子并发生光解水制氢反应.Rosseinsky等^[65]合成了 一种水稳定的铝卟啉基Al-PMOF,利用LMCT (ligand-to-metal charge transfer)电子转移机制、Pt为共催化剂 实现了高效光解水制氢效果(图5(b)).

Pt作为共催化剂对光生电子-空穴的分离和转移 具有很好的辅助作用,那么Pt颗粒与MOF颗粒的相对 位置是否也会有不一样的影响? Zhang和Jiang等^[66]选 用UiO-66-NH₂为模型MOF,合成了Pt@UiO-66-NH₂和 Pt/UiO-66-NH₂,它们具有同等Pt含量和同样的Pt尺寸, 研究了这两种材料的光催化裂解水产氢性质.与单纯 的UiO-66-NH₂相比,两种负载Pt的复合材料均显示出 明显提高但并不相同的光解水制氢性能,突出Pt在 MOF材料中的相对位置对光催化效率的影响.其中, Pt@UiO-66-NH₂材料中电子传输距离被极大地缩短, 更利于电子-空穴的分离,因此显现出相对于Pt/UiO-66-NH₂更高的光转化效率(图6).蕴含的催化机理进一 步通过超快光谱测试和荧光光谱测试得到揭示.

Au、Ag等贵金属的等离激元共振效应对增强光 吸收有至关重要的作用,和Pt电子捕获剂一起通过与 MOF复合可以促进光生电子流的形成和转移,从而提 高光催化活性^[67].最近,Jiang等^[68]选用MIL-125作为宽 带隙类半导体的代表,同时构建Pt-MIL-125和Au-MIL-125两种金属-MOF界面,特别是专门制备了Pt@MIL-125/Au和Pt/MIL-125/Au两种光催化材料,分别代表Pt 处于MOF颗粒内以及Pt处于MOF颗粒外表面的情况. 实验显示,在可见光照射下,Pt@MIL-125/Au显示出比 Pt/MIL-125/Au、Pt@MIL-125和MIL-125/Au更高的光 催化产氢活性,证明MOFs中等离激元效应和肖特基 结的协同利用至关重要,用此方式可拓展MOF复合材 料的光吸收至可见光区域并基于"电子流"的形成大大 促进电子-空穴分离,实现了高效的光催化还原效率,突 出了不同贵金属在MOF复合光催化剂中的协同作用.

除了常用的Au、Ag^[69]等作为等离激元共振体增 强光吸收以及Pt等用作共催化剂以外,Ni、Co等非贵 金属纳米颗粒也可以作为共催化剂或光活性中心,已

图 5 Pt/Ti-MOF-NH₂ (a)以及Al-PMOF (b)光催化产氢的 LCCT过程示意图^[64,65] (网络版彩图)

Figure 5 Schematic illustration of photocatalytic H_2 production reaction over (a) Pt/Ti-MOF-NH₂, (b) Al-PMOF, on the basis of the LCCT mechanism [64,65] (color online).

图 6 UiO-66-NH₂、Pt/UiO-66-NH₂和Pt@UiO-66-NH₂的光 解水制氢过程及活性对比图^[66] (网络版彩图)

Figure 6 Schematic illustration of photocatalytic $\rm H_2$ production over UiO-66-NH_2, Pt/UiO-66-NH_2 and Pt@UiO-66-NH_2 [66] (color online).

见报道的与MOF复合的材料有Ni@MOF-5^[70]、Ni-Mo@MIL-101^[71]等.

(2) 半导体-MOF异质结构

用于光催化裂解水产氢的明星半导体材料包括 TiO₂和CdS等,但是它们的单一组分材料常面临光生 电子-空穴容易复合、对太阳能利用效率有限、易光 腐蚀等问题,光催化活性有限,在走向实际大规模工业 应用方面存在困难.而MOFs与半导体材料复合可以 在一定程度上缓解这些问题.

一方面,部分MOFs虽然本身不具有光催化效果, 但是可以作为光敏剂增强半导体光催化材料的光吸 收,如早期,Wang等^[72]将不同含量CdS嵌入MIL-101

(Cr)中、利用MIL-101(Cr)来增强CdS的可见光吸收能 力,提高其光催化裂解水产氢效果.另一方面,半导体 与MOFs形成异质结构可以提升电子-空穴的分离效 率,从而提高光催化效果,如Banerjee等^[73]在基于Zn(II) 的低分子量金属水凝胶(ZAVA)中成功地原位合成了 没有任何封端剂的CdS量子点、并通过室温转化得到 CdS@ZAVCI-MOF晶体,这些CdS包埋的MOF可以用 作可见光下的光解水制氢催化剂. 其中, CdS量子点具 有敏光性,产生光生电子和空穴,电子迅速转移至MOF 的LUMO上而空穴留在CdS上。电子继续转移至共催化 剂Pt上, 在Pt上发生光解水制氢反应; 相对纯CdS而言, 这个电子转移的过程大大降低了电子-空穴复合几率, 导致光催化效果增强. 类似的MOFs与半导体异质结构 还包括Au@CdS/MIL-101^[74]、CdS/UiO-66^[75]、NiS@-NU-1000^[76], $Cd_{0.2}Zn_{0.8}S@UiO-66-NH_2^{[77]}$, $ZnIn_2S_4@$ NH₂-MIL-125(Ti)^[78]等.

为了进一步提高MOF/半导体复合结构的光生电子-空穴的分离效率,在该复合结构的基础上引入还原氧化石墨烯(RGO)是一种有效的方法.Zhang和Wu等^[79]合成了UiO-66/CdS/RGO复合结构,在此复合结构中,UiO-66的LUMO位置为-0.5 V,而CdS的最低CB位置和RGO的费米能级分别为-0.65和-0.08 V;所以CdS受到光激发产生的电子首先会转移至UiO-66上,并进一步向RGO转移,电子-空穴的复合几率被大大降低;另一方面,UiO-66的多孔性赋予该复合催化剂更多的催化位点,综合促进光催化裂解水产氢的进行,最高活性达13.8 mmol h⁻¹ g⁻¹.这种类似的复合结构还有MoS₂/UiO-66/CdS^[80]、SiW₁₂@UiO-67/M/G-CdS^[81]、CdS@NU-1000/RGO^[82]、CdS@Cd(II)-MOF@TiO₂^[83]等.

MOFs也可以直接与非金属半导体材料形成异质 结构来提高光催化制氢效率^[84],如CNNSs-MIL-100 (Fe)^[85];还可以通过在该异质结构基础上担载金属纳 米颗粒进一步提高电子-空穴的分离效率,提高光催化 产氢活性,如NH₂-MIL-125(Ti)/g-C₃N₄/NiPd复合材 料^[86]等.

(3) 金属配合物-MOF

MOFs与金属配合物复合体系中,金属配合物可以 充当两种角色:光敏剂及光催化活性中心.首例MOF 光催化剂被用于催化裂解水制氢的报道源于2009年, Mori等^[87]报道了MOF材料[Ru₂(p-BDC)₂]_n用于光催 化裂解水制氢的研究,但是需要辅以金属配合物 Ru(bpy)₃²⁺作为光敏剂、MV²⁺作为电子转移剂以及 EDTA作为电子牺牲剂.该MOF光催化剂显示的产氢 活性:TON为8.16、量子产率为4.82%.类似催化条件 下,他们随后还研究了[Ru₂(p-BDC)₂X]_n中不同阴离子 X (Cl、Br或BF₄)对光催化活性的影响^[88],以及一种 Zn-Pd MOF的光催化制氢性能^[89].

金属配合物固定在MOF框架中将具有更好的稳 定性和循环性.可以通过在合成中引入及对有机桥连 配体的后合成修饰两种方式实现金属配合物与MOFs 的结合. Lin等^[90]将[Ir(ppy)₂(bpy)]Cl衍生的有机配体参 与合成引入到与UiO-67同构的MOF框架中,并用金属 前驱体浸渍再原位还原的方法制备得到Pt担载的MOF 1和MOF 2, 用于光催化裂解水制氢并表现出优异的性 能. 在此反应体系中, 金属配合物充当光敏剂的作用, 电子转移遵从MLCT (metal-ligand charge transfer)过 程,即MOF 1和MOF 2中[Ir^{III}(ppy)₂(bpy)]²⁺簇在可见光 激发下生成¹MLCT的激发态,经过系间窜跃快速有效 地转变成³MLCT状态。由于MOF框架的刚性, MOF 1 和MOF 2的³MLCT电子发射寿命比相应配体的寿命更 长, 而Pt颗粒的存在加速了整个电子转移过程, 协同实 现高效光解水制氢. Ti-MOF-Ru(tpy),^[91]中的电子转移 过程遵从类似的原理.

Cohen等^[92]将质子还原剂[FeFe](dcbdt)(CO)6通过 后合成交换策略引入Zr-MOF中,得到光催化剂MOF-[FeFe](dcbdt)(CO)₆,该研究[FeFe](dcbdt)(CO)₆仅作为 光催化裂解水产氢的活性中心、光催化反应过程中仍 然需要引入Ru(bpy)3²⁺作为光敏剂. Chen等^[93]将两种金 属配合物同时固定到MOF框架中,合成了Ru-Pt@UIO-67、其中RuDCBPY作为光敏剂、PtDCBPY作为光催 化剂,在不需要添加电子转移剂MV²⁺的条件下实现了 高效光裂解水制氢. Park等^[94]将含联吡啶的UiO-67作 为模板MOF, 通过后合成修饰策略将Ir(III)配合物光敏 剂以及Pt(II)光催化剂引入到MOF框架中,模拟自然界 的光还原系统实现了复合光催化材料Pt,, Ir BUiO的 自我修复(图7). He等^[95]也做了类似的工作. 另外, 部分 MOF或金属配合物在形成复合结构之后可同时扮演 双重角色: 敏光性(光敏剂)和光催化活性中心, 这两种 角色协同作用,可实现更好的光催化活性^[96-98].

MOFs具有较大孔径和小的孔道窗口,利用这一结构特点,可以通过在MOF孔道中合成尺寸合适的金属

图 7 自修复MOF(Pt_n_Ir_BUiO)的结构和相应的光催化自修复机理^[94] (网络版彩图)

Figure 7 Schematic illustration showing structure of the self-healing MOF ($Pt_{n_{-}}Ir_{-}BUiO$) and the corresponding operation principle [94] (color online).

配合物实现原位封装. Jiang等^[99]利用MOFs的孔径效 应,将Co(II)的小分子配合物光催化剂封装在MOF中, 得到Co(II)@MIL-125-NH₂的复合结构. 他们通过电化 学手段确定了MOF和BDC-NH₂配体的HOMO位置,均 高于Co²⁺/Co⁺的还原电势,说明在此光催化体系中 MIL-125-NH₂扮演光敏剂的角色,而Co(II)分子为共催 化剂和催化活性中心. 由于MOF与孔道中的Co(II)分 子在空间上是分离的,BDC-NH₂配体上产生的光生电 子快速转移至Co(II)分子,空穴却留在MOF上,这种空 间上的电荷分离大大降低了光生电子和空穴的复合机 率,从而促进光催化裂解水制氢反应的进行. 这种利用 MOFs孔径效应实现与光活性客体分子结合用于光裂 解水产氢的复合结构还包括Co@NH₂-MIL-125 (Ti)^[100]、Ni(II)@NH₂-MIL-125(Ti)^[101]等.

(4) 染料-MOF

由于许多有机或无机大分子具有敏光性,可以作为光活性中心,也经常被用于与MOFs的复合.例如, 染料大分子是一类很好的敏光材料,染料敏化的MOFs用于光催化的研究报道也很多^[102~105].

Du等^[106]合成二维层状MOF: [Ni₂(PymS)₄]_n, 其中 有类似[NiFe]氢化酶的成分,是光催化裂解水的活性 中心. 但是,该MOF敏光性差,需要在体系中添加有机 大分子荧光素作为光敏剂才能获得较好的光催化效 果. 另外, Hu等^[107]将一种铜基MOF: MOF-199生长在 泡沫镍上,得到MOF薄膜材料,该MOF-199/Ni薄膜的 光催化产氢活性达到8000 μmol h⁻¹ g⁻¹,而在用染料伊 红Y做敏化剂、Pt做共催化剂的条件下活性可达到 24400 µmol h⁻¹ g⁻¹. 最近, Liu等^[108]合成了UiO-66-NH₂ 与石墨烯的复合材料,在赤藓红做敏光剂、Pt做共催 化剂的条件下活性可达到41.4 mmol h⁻¹ g⁻¹. Zang 等^[109]选用由染料分子罗丹明6G演变而来的有机配体 制备结晶性铜基配位聚合物Cu-RSH. 利用类染料分子 的敏光性以及Cu的催化活性,在体系存在另一染料分 子伊红Y时获得了很好的光催化效果,活性约为 10 mmol h⁻¹ g⁻¹.

(5) 其他物质-MOF

多金属氧酸盐POM是一类具有催化活性的无机 大分子, MOF与POM复合也可以用于光催化裂解水产 氢. Lin等^[110]将POM: [P₂W₁₈O₆₂]⁶⁻引入到含有[Ru (bpv)。1²⁺衍生配体的敏光MOF中;在这种POM@MOF 复合材料中,光敏化成分和催化活性成分被分级组装, 使得光激发下产生的光生电子可以快速地从光敏性 MOF向催化活性中心POM进行转移,从而实现高效的 可见光驱动的裂解水产氢(图8). 最近, Lin等^[111]还将另 一种POM: Ni₄P₂引入到敏光MOF中并研究其光催化产 氢行为. 这种模块化和可调整的合成策略也适用于其 他多功能MOF材料的设计,如Hill等^[112]将POM: H₃PW₁₂O₄₀引入NH₂-MIL-53中,POM在该复合材料中 具有4种功能: (1) 可以将H₂PtCl₆还原成Pt NPs, 得到 POM-Pt NPs@NH₂-MIL-53复合材料; (2) 稳定Pt NPs; (3) 促使带负电的Pt NPs与POM颗粒表面质子化的 NH₂-MIL-53强静电结合; (4) POM本身可促进光催化 还原反应,最终也赋予该复合材料良好的光催化活性,

此外,由于碘(I₂)作为客体可以增强复合材料的导电性,研究人员希望将其引入到MOFs中.Su等^[113]以I₂为前驱体模板,合成得到4种孔道中含有线形聚碘链的MOF复合材料,该结构在以CH₃OH为牺牲剂的水溶液体系中显示出较好的光解水制氢活性,最高达到2105.0 µmol h⁻¹ g⁻¹.

3.2 MOFs光催化裂解水产氧

由于产氧端需要突破较高能垒形成O-O键且为多 电子(4e)过程(2H₂O→4H⁺+4e⁻+O₂),作为光催化水裂 解另一半反应的水氧化被认为是非常具有挑战性的过 程.MOFs近年来被报道可用于光催化裂解水产氧,如 Liu和Huang等合成了铋基MOF材料Bi-mna (mna: 2mercaptonicotinic acid,巯基丙酸)^[114]和Bi-BTC^[115],验 证了其具有光催化裂解水产氧活性,并提出在这两种

图 8 POM@MOF复合光催化剂合成及催化转化示意图^[110] (网络版彩图)

Figure 8 Schematic illustration showing the fabrication and photocatalytic H_2 production over POM@MOF [110] (color online).

MOFs中,光催化电子和空穴转移遵循LLCT.以Bimna材料为例,S原子贡献了价带(valence band,VB), 在光激发下产生的光生电子会通过Bi-S形成的共价键 向CB的O原子轨道进行转移;Bi充当了电子转移桥梁, 导致更快的电子-空穴分离效率,从而实现更好的空穴 利用效率,提高光催化水氧化活性.

Horiuchi等^[116]合成了各种铁基MOFs (Fe-MOFs), 特别是MIL-101(Fe),在可见光照射下具有光催化水氧 化性能,对光的吸收波长可达约600 nm.水氧化产生O₂ 的最关键步骤是Fe-O簇的光吸收,为了加快光生电子-空穴的分离,在体系中添加硝酸银作为牺牲剂用来消 耗电子,而光催化Fe-O簇产生的空穴则直接用于水氧 化产O₂反应.与块状赤铁矿(α-Fe₂O₃)相比,作为MOF框 架金属节点的Fe-O簇的超分散作用有助于改善反应 的效率.

Su等^[117]也制备了3种铁基MOFs及其氨基官能化 衍生物,并在可见光照射下将他们作为水氧化催化剂 进行了相关研究.他们认为,铁基MOFs作为有效的水 氧化催化剂是光催化水氧化过程的最有希望的候选 者,而与其他Fe基催化剂相比,MIL-101(Fe)具有更高 的电流密度和更早的起始电位,并显示出更优异的可 见光驱动的析氧活性.

近期,Fontecave和Dolbecq等^[118]合成了不含贵金属的POM与锆基卟啉MOF的复合结构:P₂W₁₈Co₄@MOF-545.在此复合结构中,POM为光催化水氧化活性中心,MOF-545为光敏剂,选用MOF-545的优势在

于: (1) 足够高的比表面积来容纳P₂W₁₈Co₄; (2) 优异的 化学稳定性和热稳定性; (3) 卟啉基团可吸收可见光, 起敏光作用. 该材料表现出高的光催化活性,并且对 于可见光驱动的水氧化具有良好的稳定性.

3.3 MOFs光催化全水分解反应

光催化裂解水已被广泛研究,因为它提供了用氢 能代替化石燃料的可能性.许多关于裂解水的研究都 集中在半反应,即存在牺牲剂的情况下产O₂或H₂,同 时大多数用于裂解水的光催化剂是复合材料.最近Liu 和Huang等^[119]合成了由AlO₄(OH)₂八面体和有机配体 BDC-NH₂桥连而成的铝基MOF,其中BDC-NH₂中的苯 环可作为产O₂光催化剂,并通过与氨基配位将Ni²⁺阳 离子引入MOF孔中进行改性,而Ni²⁺是高效的产氢催 化剂,所得的MOF可用于高效全水分解反应.

4 MOFs光催化CO2还原

化石燃料的燃烧增加温室气体CO₂的排放被认为 是全球气候变暖的主要原因,发展新型材料对CO₂进 行吸附、隔离或转化是减少CO₂排放、减轻温室效应 的有效策略.其中,最有发展前景的方式是光催化CO₂ 转化生成小分子化学原料或燃料,包括HCOOH、 CH₃OH、CH₄、CO等.CO₂中C=O键的能量是 750 kJ mol⁻¹,远高于C-C (336 kJ mol⁻¹)、C-O (327 kJ mol⁻¹,远高于C-C (336 kJ mol⁻¹)、C-O (327 kJ mol⁻¹)和C-H (411 kJ mol⁻¹)的键能,所以,对 CO₂的有效捕获和活化是高效还原CO₂的关键步骤.基 于MOFs对CO₂良好的吸附能力以及MOFs多孔结构暴 露的多活性位点对CO₂活化的能力,MOFs在光催化 CO₂还原方面的应用引起越来越多的研究兴趣.

4.1 纯MOFs光催化CO2还原

MOFs具有类半导体性质,所以纯MOFs本身即可 用作光催化材料.第一例用纯MOF做光催化剂催化 CO₂还原的报道来自于2012年,Li等^[120]研究了纯NH₂-MIL-125(Ti)的可见光催化CO₂还原的能力.选用2-氨 基对苯二甲酸(BDC-NH₂)合成得到的NH₂-MIL-125 (Ti)材料,相对于MIL-125(Ti)的光吸收边缘可从350延 伸至500 nm.在此结构中,光生电子转移遵从LMCT过 程,用BDC-NH₂代替对苯二甲酸(H₂BDC)影响了 LMCT过程,这是导致MOF光吸收能力变化的原因; 另一方面,由于NH₂可以增强MOF框架与CO₂相互作用,故NH₂-MIL-125(Ti)表现出对CO₂更好的吸附能力. 他们研究了在乙腈为溶剂、TEOA为牺牲剂条件下NH₂-MIL-125(Ti)的光催化还原CO₂能力,10h可生成8.14 μ mol的HCOO⁻产物.

用配体BDC-NH₂替代H₂BDC可以拓宽MOFs的吸 光范围,该结论同样适用于其他基体MOFs材料.Li 等^[121]紧接着报道了NH₂-UiO-66(Zr)的光催化CO₂还原 性质,相较UiO-66(Zr),NH₂-UiO-66(Zr)亦具有显著提 高的可见光催化活性.并且通过后合成交换策略将 NH₂-UiO-66(Zr)中的Zr部分替代为Ti,得到的具有双 金属中心的NH₂-UiO-66(Zr/Ti)材料显示出更优异的光 催化CO₂还原性能^[122,123].由于地球上铁资源的丰富性, Li等^[124]还研究了铁基MOFs:NH₂-MIL-101(Fe)、NH₂-MIL-53(Fe)、NH₂-MIL-88B (Fe)的光催化还原CO₂活 性,并提出光反应过程中双激发途径的存在(图9),即 电子转移的途径除了Fe-O团簇的直接激发(电子从 O₂⁻转移到Fe³⁺产生Fe²⁺)外,氨基对苯二羧酸配体也可 以受到光激发,并将产生的光生电子转移到Fe中心, 两种激发途径协同作用,增强光催化活性.

卟啉是重要的敏光有机化合物,可拓宽MOF材料 的光吸收至整个可见光区域, Zhang和Jiang等^[125]报道 了一种卟啉基MOF: PCN-222, 该MOF对CO,具有选择 性吸附功能并能实现其高效光催化还原能力. 他们运 用超快光谱结合时间分辨荧光光谱对光催化效率与结 构的内在联系进行了探究、发现从有机配体四羧基苯 基卟啉(H₂TCPP)转变至PCN-222时结构中出现了深的 电子捕获态,该捕获态作为电子陷阱可以捕获和积累 长寿命光生电子, 与吸附的CO₂发生作用实现光催化 CO,还原: 捕获态的存在大大降低光生-电子的复合几 率,实现更好的光催化效率(图10). 卟啉中心可以镶嵌 多种金属离子,如Fe、Cu、Co等,其中Cu离子容易与 CO_2 的 π 轨道相互作用促使其发生离解,所以铜卟啉的 MOFs被认为是理想的光催化CO₂还原材料. Huang 等^[126]合成了一种铜卟啉基MOF,记作S_{Cu},作为对照, 他们还合成了结构类似但卟啉中心不含铜的MOF, 记 作S_n. 结果表明, 与S_n相比, S_C表现出更好的CO₂捕集 能力以及光催化CO2转化成CH3OH的性能.

催化剂中单个金属原子活性位点的存在可以提供 最大的原子利用效率,这为制造高效光催化剂提供了 最理想的策略,并为从分子水平上理解多相催化提供

图 9 氨基化铁基MOFs在光照条件下的双激发途径^[124] (网络版彩图)

Figure 9 Dual excitation pathways over amino-functionalized Febased MOFs upon light irradiation [124] (color online).

图 10 PCN-222的光催化CO₂还原示意图^[125] (网络版彩图) Figure 10 Schematic illustration showing photocatalytic CO₂ reduction over PCN-222 [125] (color online).

依据. Ye等^[127]向MOF-525的卟啉环中心引入Co单活性 位点,大幅度提高了MOF的电子-空穴分离效率.具体 而言,可见光照下,光生电子从卟啉环定向迁移到单位 点Co活性中心,加快电子转移的速率并获得长寿命的 电子供应,用于还原吸附在Co上的CO₂小分子.MOF-525-Co的光催化CO₂还原生成CO的效率是纯MOF的 3.13倍,生成CH₄效率是纯MOF的5.93倍.Grau-Crespo 等^[128]运用密度泛函理论对卟啉中心的金属离子进行 了优化,他们认为光催化活性最佳的卟啉MOF结构组 成是部分Fe取代的AI基卟啉MOF,同时保持卟啉中心 为Zn原子.

除了卟啉有机配体, 葱的有机配体也是一种很好的可见光响应基体. Xing和Su等^[129]选用葱的有机配体 作为桥连基团得到一种新型微孔Zr基MOF: NNU-28, 该MOF不仅具有优异的化学稳定性和热稳定性, 还表 现出对CO₂的高效捕获及对可见光的宽范围响应. 基 于蒽基有机配体和Zr-O簇的双重光催化路径, NNU- 28对CO₂的光催化还原生成HCOOH的效率达到 183.3 μ mol h⁻¹ mmol_{MOF}⁻¹.

除了对金属离子和有机配体的选择不同导致的 MOF结构各异, MOF光催化活性还受到光催化反应体 系的影响. 多数情况下, 光催化CO₂还原反应是在乙腈 中以三乙醇胺作为牺牲剂的条件下进行的, 这种体系 存在潜在的化学污染. Zhang等^[130]发现将MOF固定在 CO₂/H₂O相界面处将有利于光催化活性的提高, 而且 通过调整CO₂压力和H₂O含量, 可以理性控制光催化反 应的进行. 该反应体系中不涉及有机溶剂, 环境友好, 值得借鉴.

4.2 金属配合物参与的MOF光催化CO2还原

Re/Ir/Ru等金属配合物用作高效光敏剂或均相光 催化剂已受到大众认可,目前报道的许多MOFs的光 催化CO₂还原反应都借助于金属配合物的敏化作用. 由于金属配合物作为均相体系在催化过程中缺乏长期 稳定性、分离困难,往往会造成产物污染,不能实现光 催化剂的循环再利用.通过后合成修饰策略或原位合 成方法将Re/Ir/Ru的金属配合物固定到MOF框架中, 不仅使均相催化剂异相化,还能实现MOFs与金属配 合物的协同光催化,最终达到更好的光催化效果.以 下按照金属配合物在MOFs光催化过程中不同的引入 方式分类,介绍了近年来金属配合物参与的MOFs光 催化CO₂还原反应.

4.2.1 反应体系中直接引入

在反应溶液中加入金属配合物作光敏剂可促进光 催化CO₂还原反应的进行.Wang等^[131]合成了Co-ZIF-9, 发现在反应体系中存在[Ru(bpy)₃]Cl₂·6H₂O作为光敏 剂的情况下Co-ZIF-9中的Co活性位点会表现出明显的 光催化还原CO₂性能.Kubiak和Cohen等^[132]将 Mn(bpydc)(CO)₃Br引入到稳定的UiO-67骨架中,在以 [Ru(dmb)₃]²⁺为光敏剂、BNAH为牺牲剂的条件下可 有效地将CO₂还原成HCOOH(图11).引入Mn配合物的 MOF光催化活性的增加归因于MOF框架的分散作用, 稳定催化剂并抑制均相Mn配合物分子催化剂的二聚, 在提高活性的同时还可以实现重复使用.Fontecave 等^[133]在MOF催化体系中引入Rh基配合物作为光敏剂, 并报道了其存在位置(在溶液中(均相)或固定在MOF

图 11 UiO-67-Mn(bpy)(CO)₃Br的光催化CO₂还原机理^[133] (网络版彩图)

Figure 11 Proposed mechanism for the photocatalytic reaction with UiO-67-Mn(bpy)(CO)₃Br [133] (color online).

框架上(非均相))对光催化活性的影响.实验发现均相和非均相体系的光催化活性具有可比性,但Rh基配合物固定在MOF框架上形成的非均相体系更加稳定且具有产物选择性和循环性.Wang等^[134]也研究了在光催化反应溶液中加金属配合物做光敏剂的情况下Co-MOF的光催化CO₂转化能力.

4.2.2 后合成修饰

通过后合成修饰在MOFs的有机连接配体上进行 金属化是在MOF上固定金属配合物的主要方式. Cohen等^[135]通过后合成交换策略将Cr(III)和Ga(III)活性 物种引入到UiO-66框架中,不仅增强了复合材料的可 见光吸收,同时Cr(III)和Ga(III)的引入使有机桥连配 体金属化,促进了MOF内的电子转移过程,最后获得 更高的光催化CO₂还原活性.

基于MOFs中含N有机配体与金属配合物不饱和 中心的配位作用,UiO-67框架结构经常被用来固定金 属配合物.Lin等^[136]利用后合成修饰策略将Ir¹¹¹-(dcbpy)Cl、Re¹(CO)₃(dcbpy)Cl和Ru^{II}(bpy)₂(dcbpy)]Cl₂ 成功引入到UiO-67同构MOFs框架中,并详细研究了 其各方面的光催化能力,其中含Re¹配合物的MOF-4具 有将CO₂还原成CO的光催化活性.Kitagawa等^[137]通过 后合成交换策略向UiO-67中引入Ru^{II}的金属配合物作 为催化活性中心,得到PCP-Ru^{II} (PCP=porous coordination polymers,多孔配位聚合物)的复合结构,在此结构 中,选择UiO-67的锆基MOF进行后合成功能化修饰有 3点优势:(1)UiO-67中的有机连接基团bpdc (bpdc = biphenyl-4,4'-dicarboxylate, 4,4'-联苯二羧酸)与金属配 合物中的有机配体结构类似; (2) UiO-67具有足够的孔 空间容纳金属配合物; (3) UiO-67具有高热稳定性和化 学稳定性.结果表明,该复合材料在低浓度CO₂环境中 仍然表现出优异的光催化CO₂还原活性.

最近,Yang和Yaghi等^[138]也向类UiO-67结构中通 过后合成策略引入Re^I的金属配合物作为光催化CO₂还 原活性中心,证实每个晶胞中含有3个Re^I的金属配合 物时(Re₃-MOF)具有最高的光催化活性.随后,他们将 Ag立方体负载在Re₃-MOF上,这种结构在空间上将光 活性Re配合物限制在Ag纳米立方体表面增强的近表 面电场中心附近,导致其在可见光下CO₂到CO的催化 转化效率提高了7倍,48 h内光催化性能保持稳定 (图12).

4.2.3 基于含金属配合物的功能配体

除了后合成修饰引入功能金属配合物、相当一部 分研究工作预先合成带金属配合物的有机配体、并将 其作为连接基团合成到MOF结构中. Luo等^[139]以 Ru(H₂dcbpy)₃²⁺作为有机连接基团与Cd(ClO₄)₂反应得 到Ru-MOF纳米花结构,该产物明显增强的光催化CO, 还原活性和循环性,反应中电子转移遵从MLCT过程. Luo等^[140]还研究了结构穿插对提高Ru-MOF光催化剂 稳定性的影响. Ryu等^[141]将Re^I(CO)₃(BPYDC)(CI)分子 催化剂和-NH。修饰共同引入到MOF光催化剂Re-MOF-NH₂中,氨基使Re金属络合物中羰基的构型变得 不对称,有助于在Re-MOF-NH,内形成CO,中间产物. Re-CO不对称羰基基团的电子不均匀分布以及氨基甲 酸酯中间体的分子间稳定作用使得Re-MOF-NH,光催化 CO,还原生成CO的能力提升了3倍之多. Lin等[142]合成了 具有UiO构型的{Zr₆(O)₄(OH)₄[Re(CO)₃Cl(bpydb)]₆} MOF-1,发现其具有选择性光催化还原CO₂到CO的 性能.

4.3 半导体-MOF复合物的光催化CO2还原

许多半导体材料被开发用于光催化CO₂还原,但 是由于光生电子-空穴对容易复合、太阳能利用效率 低以及CO₂吸附力弱等诸多因素,单一组分半导体材 料的光催化性能受到局限.因此,大量的研究集中在 如何延长光生电子-空穴对的寿命和开发具有高可见 光响应性以及高CO₂吸附能力的复合光催化剂上.增 加光催化剂的比表面积已被证明是提供更多反应位点

图 12 Re_n-MOF的构筑策略(a)和AgCRe_n-MOF的等离激元 共振增强光催化CO₂转化(b)示意图^[138](网络版彩图) Figure 12 (a) Fabrication strategy of Re_n-MOF, and (b) plasmonenhanced photocatalytic CO₂ conversion over AgCRe_n-MOF [138] (color online).

和更好的CO₂吸附性质并因此提高光催化活性的有效 方式.为此,将多孔MOFs与半导体光催化剂进行复合, 可以有效地利用MOF的高吸附性能和良好的能带可 调节性等优势,通过形成异质结来改善电子-空穴对的 有效分离等.

Wang等^[143]将MOF与半导体材料Zn₂GeO₄结合形 成ZIF-8/Zn₂GeO₄复合材料. 与Zn₂GeO₄纳米棒光催化 剂相比, ZIF-8/Zn₂GeO₄复合材料在紫外光照射10h条 件下的CH₃OH产率增加了62%, 高效的光还原CO₃活 性源于复合材料增强的光吸收以及ZIF-8对CO₂的捕获 能力. Xiong和Zhang等^[144]制备了Cu₃(BTC)₂@TiO₂核壳 结构,该杂化结构结合了Cu₃(BTC),对CO₂的捕获作用 以及TiO,的光催化CO,转化能力、协同实现高效地选 择性光催化CO,还原. 其中TiO,被激发产生光生电子 和空穴,并将电子转移至Cu₃(BTC)₂,与吸附在 Cu₃(BTC)₂的Cu位点上的CO₂发生反应,空穴则留在 TiO,上,相对于裂解水的高效选择性原因在于: (1)还 原反应的活化位点, Cu更易活化CO₂; (2) 考虑到CH₄的 产生是8电子过程、电荷分离效率很重要、而这种异质 结构的存在大大增强了电荷分离过程. 用于光催化 CO,还原的MOF与无机半导体复合结构还包括CdS/ Co-ZIF-9^[145]、CPO-27-Mg/TiO₂^[146]、Co-ZIF-9/TiO₂^[147]、 TiO₂/NH₂-UiO-66^[148]、CuTiO₂/ZIF-8杂化膜^[149]、Cd_{0.2}-Zn_{0.8}S@UiO-66-NH₂^[77]等.

石墨化的C₃N₄化合物是一种非金属半导体材料, 也是一种重要的可见光活性的催化剂.Ye等^[150]将UiO-66与CN纳米片复合得到UiO-66/CNNS材料,所获得的 杂化结构催化剂不仅具有较大的比表面积和较强的 CO₂吸附能力,而且由于CNNS与UiO-66界面上的有效 电子转移,载流子的分离能力和寿命均得到改善.因 此,与温和反应条件下的纯CNNS相比,UiO-66/CNNS 复合光催化剂对CO₂还原显示出更高的催化活性. Wang等^[151]将g-C₃N₄与Co-ZIF-9复合,详细探索了其光 催化CO₂还原的能力.类似的复合结构还包括g-C₃N₄/ ZIF-8^[152]等.

4.4 金属纳米颗粒参与的MOF光催化CO2还原

贵金属如Pt、Pd、Au等掺杂到半导体光催化剂 中是一种常用的抑制光生电子和空穴复合的方法. 半 导体与贵金属会在结合处形成肖特基势垒,促使半导 体导带上的光生电子转移到贵金属上,提高光生载流 子的分离效率并最终提高光催化性能.基于MOF的类 半导体行为,金属纳米颗粒与MOF之间的组合也会产 生类似的特性.同时,由于只有半导体和贵金属具有适 当的费米能级匹配才能形成有效的肖特基势垒,因此 选择合适的贵金属来构建金属/MOF复合催化剂至关 重要.Li等^[60]探讨了不同贵金属与MOF复合对光催化 性能的影响.在M/NH₂-MIL-125(Ti)(M=Pt或Au)复合 材料中,与纯MOF相比,Pt/NH₂-MIL125(Ti)具有显著 增强的光催化CO₂还原活性,而Au对该反应则具有负 面影响.该工作阐明的光催化机理为开发金属纳米颗 粒-MOF复合光催化剂提供了一定的理论指导.

5 MOF衍生材料的光催化应用

MOFs可以作为自牺牲模板通过煅烧来制备多孔 碳、碳基复合材料或其他无机材料,而部分无机材料 可作为半导体材料继续用于光催化应用.Strunk和 Fischer等^[153]将预先合成的金纳米颗粒(gold nanoparticles, GNPs)在溶剂热合成过程中沉积到NH₂-MIL-125 的表面,通过GNP/NH₂-MIL-125的高温热解制备靶向 的GNP/TiO₂纳米复合材料.与参比样品相比,用GNP 改性显著增加了MOF衍生的TiO₂材料的光催化活性, 可以将CO₂还原成CH₄.Lou等^[154]选择铟基MOF: MIL- 68为自牺牲模板,采用两步离子交换过程,得到分层异 质结构的 In_2S_3 -Cd In_2S_4 纳米管.该分层结构促进了光生 电子和空穴的分离和迁移,增强了对CO₂分子的吸附 和富集,并为表面氧化还原反应提供了更为丰富的催 化活性位点.在不需要使用贵金属助催化剂的情况下, In_2S_3 -Cd In_2S_4 纳米管仍表现出明显的可见光催化CO₂ 还 原 性 能 和 超 高 稳 定 性 , CO的 产 率 高 达 825 μmol h⁻¹ g⁻¹).

Lin等^[155]合成了MIL-101(Fe),并在其表面生长无 定形的TiO₂,得到复合材料MIL-101@TiO₂,将此前驱 体进行煅烧得到核壳结构的Fe₂O₃@TiO₂材料,担载Pt 做共催化剂并研究其光催化裂解水产氢性能.Pal 等^[156]用铜基MOF(Cu-MOF)作为模板制备了表面具有 高度分散Cu位点的Cu/CuO@TiO₂杂化纳米复合材料, 在太阳光照下显示出高效的催化产氢性能.这种高的 光催化产氢活性主要归因于表面沉积的Cu⁰物质以及 CuO和TiO₂之间的小尺寸异质结(1~2 nm)的存在,促进 了从TiO₂处产生的界面电荷转移.用于光催化产氢的 MOF衍生物还有多孔CdS^[157]、双金属MOF结构ZnCo-ZIF衍生的Pt-ZnO-Co₃O₄、Pt-ZnS-CoS和Pt-Zn₃P₂-CoP 异质结构^[158]等.

Wang等^[159]通过将Keggin型POM引入MOF中制 备得到PW₁₂@ZIF-67材料,再经过热处理得到一系列 含有超分散金属-氧簇分子的PW₁₂@Co₃O₄光催化材 料.这种衍生的纳米复合结构可以继承MOF的多孔性 质,与纯MOF相比,在光催化水氧化中表现出显著改 善的光催化活性.并且光催化水氧化性能可通过改变 热处理温度和POM进料量来进行有效调节.MOFs的 衍生光催化材料还可以用于光催化有机染料降解、光 催化有机物转化等领域,限于篇幅,这里不再详细 介绍.

6 结论与展望

本文综述了近年来MOFs用于光催化反应的相关 研究进展. MOFs是一类较为新颖的光催化材料, 正受 到越来越广泛的关注, 主要原因在于其结构的独特性, 如通过有机桥连配体引入多功能性的各类金属配合物 及功能性分子等, 同时其多孔特性也为MOF复合光催 化剂的构筑提供了很多可能. 目前关于MOFs用于光 催化的研究报道已经很多,限于篇幅,本文并没有详 尽罗列,可以参考相关综述文献进一步加深了解和理 解^[160-175].

无论是MOFs光催化分解水或CO,还原,还是光催 化有机物(包括染料)的转化等、都有很多可行的策略 被报道用于改善光催化反应性能。如向MOFs中引入 敏光基团增强光吸收、设计合成MOF与其他金属纳 米颗粒或金属配合物复合材料等. 但是. 目前该领域的 研究还处于起步阶段、仍然有很大的空间来对MOF基 光催化剂进行理性设计以获得更优越的光催化性能. MOFs明确的结构可以加深我们对光催化机理的理解, 并为未来更高效的光催化体系构筑提供理论支撑. 一 些可能的研究思路包括但不限于以下4点: (1) 通过引 入等离激元共振效应或上转换策略理性设计MOF基 复合材料、通过拓宽催化剂的光吸收范围来增强对太 阳光的利用效率,从而增加光生电子-空穴对的生成 数; (2) 优化光催化材料的结构设计, 如设计Z-Scheme 系列MOF基光催化剂、通过能带调控实现更有效的光 生电子-空穴的转移和分离,同时实现电子的高还原能 力以及空穴的高氧化能力; (3) 在MOF基催化材料体 系中设计合成高分散的共催化剂,如金属单原子^[176], 实现催化活性中心的最大原子利用效率,从而提高光 催化活性; (4) 运用超快光谱、同步辐射、原位电子 显微镜等先进表征手段对合成的MOF基光催化剂进 行详细表征,获取明确的光催化反应机理,指导后续光 催化剂的设计合成等. 值得注意的是, 迄今报道的绝大 多数光催化分解水和CO。还原反应都是在利用牺牲剂 的条件下驱动的, 在不使用任何牺牲剂条件下实现光 催化全水分解以及CO₂还原,目前仍是一项十分有挑 战性的工作. Jiang等^[177]最近将光催化产氢反应与增值 苄胺氧化反应相结合,成功实现在不加牺牲剂条件下 的光催化过程,并通过气液组分差异实现氧化还原产 物的有效分离、为未来绿色光催化提供了重要的参考 和借鉴.

总之, MOF基材料在光催化中的应用有着其自身 独特的优越性. 相关研究不仅对于拓展MOF材料的功 能应用有重要意义, 对光催化领域也有着重要的推动 作用. 可以预见在未来5~10年中, 这一研究领域将会 迎来更快、更蓬勃的发展.

参考文献_

- 1 Wu Y, Chen Z, Hu L, Jin M, Li Y, Jiang J, Yu J, Alejaldre C, Stevens E, Kim K, Maisonnier D, Kalashnikov A, Tobita K, Jackson D, Perrault D. Nat Energy, 2016, 1: 16154
- 2 Huang Q. Nucl Fusion, 2017, 57: 086042
- 3 Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv Mater, 2012, 24: 229-251
- 4 Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev, 2014, 43: 7787-7812
- 5 Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Chem Soc Rev, 2014, 43: 5234–5244
- 6 Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253-278
- 7 Bai S, Ge J, Wang L, Gong M, Deng M, Kong Q, Song L, Jiang J, Zhang Q, Luo Y, Xie Y, Xiong Y. Adv Mater, 2014, 26: 5689–5695
- 8 Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J Am Chem Soc, 2014, 136: 9280–9283
- 9 Xie YP, Yu ZB, Liu G, Ma XL, Cheng HM. Energy Environ Sci, 2014, 7: 1895–1901
- 10 Lin Q, Bu X, Mao C, Zhao X, Sasan K, Feng P. J Am Chem Soc, 2015, 137: 6184-6187
- 11 He Z, Kim C, Lin L, Jeon TH, Lin S, Wang X, Choi W. Nano Energy, 2017, 42: 58-68
- 12 Wen J, Xie J, Chen X, Li X. Appl Surf Sci, 2017, 391: 72-123
- 13 Long JR, Yaghi OM. Chem Soc Rev, 2009, 38: 1213-1214
- 14 Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673-674
- 15 Cook TR, Zheng YR, Stang PJ. Chem Rev, 2013, 113: 734-777
- 16 Zhou HC, Kitagawa S. Chem Soc Rev, 2014, 43: 5415-5418
- 17 Devic T, Serre C. Chem Soc Rev, 2014, 43: 6097-6115
- 18 Zeng L, Guo X, He C, Duan C. ACS Catal, 2016, 6: 7935–7947
- 19 Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B. Adv Mater, 2016, 28: 8819-8860
- 20 Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena FX, Garcia H. Chem Eur J, 2007, 13: 5106-5112
- 21 Wen LL, Wang F, Feng J, Lv KL, Wang CG, Li DF. Cryst Growth Des, 2009, 9: 3581-3589
- 22 Das MC, Xu H, Wang Z, Srinivas G, Zhou W, Yue YF, Nesterov VN, Qian G, Chen B. Chem Commun, 2011, 47: 11715–11717
- 23 Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J. Appl Catal B-Environ, 2017, 202: 653-663
- 24 Zeng X, Huang L, Wang C, Wang J, Li J, Luo X. ACS Appl Mater Interfaces, 2016, 8: 20274–20282
- 25 Li M, Zheng Z, Zheng Y, Cui C, Li C, Li Z. ACS Appl Mater Interfaces, 2017, 9: 2899-2905
- 26 Deng X, Li Z, García H. Chem Eur J, 2017, 23: 11189-11209
- 27 Wu P, He C, Wang J, Peng X, Li X, An Y, Duan C. J Am Chem Soc, 2012, 134: 14991–14999
- 28 Zhang Y, Guo J, Shi L, Zhu Y, Hou K, Zheng Y, Tang Z. Sci Adv, 2017, 3: e1701162
- 29 Nasalevich MA, Goesten MG, Savenije TJ, Kapteijn F, Gascon J. Chem Commun, 2013, 49: 10575-10577
- 30 Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C. J Am Chem Soc, 2017, 139: 8222-8228
- 31 Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL. J Am Chem Soc, 2017, 139: 2035-2044
- 32 Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Ferey G. J Am Chem Soc, 2009, 131: 10857–10859
- 33 Ke F, Wang L, Zhu J. Nano Res, 2015, 8: 1834-1846
- 34 Goh TW, Xiao C, Maligal-Ganesh RV, Li X, Huang W. Chem Eng Sci, 2015, 124: 45-51
- 35 Fu Y, Sun L, Yang H, Xu L, Zhang F, Zhu W. Appl Catal B-Environ, 2016, 187: 212-217
- 36 Yang Z, Xu X, Liang X, Lei C, Wei Y, He P, Lv B, Ma H, Lei Z. Appl Catal B-Environ, 2016, 198: 112-123
- 37 Xu X, Liu R, Cui Y, Liang X, Lei C, Meng S, Ma Y, Lei Z, Yang Z. Appl Catal B-Environ, 2017, 210: 484–494
- 38 Sun D, Ye L, Li Z. Appl Catal B-Environ, 2015, 164: 428-432
- 39 Li QY, Ma Z, Zhang WQ, Xu JL, Wei W, Lu H, Zhao X, Wang XJ. Chem Commun, 2016, 52: 11284–11287
- 40 Shi D, He C, Qi B, Chen C, Niu J, Duan C. Chem Sci, 2015, 6: 1035-1042
- 41 Nguyen HL, Vu TT, Le D, Doan TLH, Nguyen VQ, Phan NTS. ACS Catal, 2017, 7: 338-342
- 42 Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X. Chem Commun, 2012, 48: 11656–11658
- 43 Johnson JA, Zhang X, Reeson TC, Chen YS, Zhang J. J Am Chem Soc, 2014, 136: 15881–15884

- 44 Johnson JA, Luo J, Zhang X, Chen YS, Morton MD, Echeverría E, Torres FE, Zhang J. ACS Catal, 2015, 5: 5283–5291
- 45 Wang D, Wang M, Li Z. ACS Catal, 2015, 5: 6852-6857
- 46 Zeng L, Liu T, He C, Shi D, Zhang F, Duan C. J Am Chem Soc, 2016, 138: 3958-3961
- 47 Wang D, Li Z. J Catal, 2016, 342: 151-157
- 48 Sun D, Li Z. J Phys Chem C, 2016, 120: 19744–19750
- 49 Logan MW, Lau YA, Zheng Y, Hall EA, Hettinger MA, Marks RP, Hosler ML, Rossi FM, Yuan Y, Uribe-Romo FJ. Catal Sci Technol, 2016, 6: 5647–5655
- 50 Yang C, You X, Cheng J, Zheng H, Chen Y. Appl Catal B-Environ, 2017, 200: 673-680
- 51 Yu X, Cohen SM. Chem Commun, 2015, 51: 9880-9883
- 52 Llabrés i Xamena FX, Corma A, Garcia H. J Phys Chem C, 2007, 111: 80-85
- 53 Assi H, Pardo Pérez LC, Mouchaham G, Ragon F, Nasalevich M, Guillou N, Martineau C, Chevreau H, Kapteijn F, Gascon J, Fertey P, Elkaim E, Serre C, Devic T. *Inorg Chem*, 2016, 55: 7192–7199
- 54 Shi D, Zheng R, Sun MJ, Cao X, Sun CX, Cui CJ, Liu CS, Zhao J, Du M. Angew Chem Int Ed, 2017, 56: 14637–14641
- 55 Song T, Zhang P, Zeng J, Wang T, Ali A, Zeng H. Int J Hydrogen Energy, 2017, 42: 26605–26616
- 56 Song T, Zhang L, Zhang P, Zeng J, Wang T, Ali A, Zeng H. J Mater Chem A, 2017, 5: 6013–6018
- 57 Gomes SC, Luz I, Llabrés i Xamena FX, Corma A, García H. Chem Eur J, 2010, 16: 11133-11138
- 58 Toyao T, Saito M, Horiuchi Y, Mochizuki K, Iwata M, Higashimura H, Matsuoka M. Catal Sci Technol, 2013, 3: 2092-2097
- 59 Hou C, Xu Q, Wang Y, Hu X. RSC Adv, 2013, 3: 19820-19823
- 60 Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z. Chem Eur J, 2014, 20: 4780-4788
- 61 Wen M, Mori K, Kamegawa T, Yamashita H. Chem Commun, 2014, 50: 11645-11648
- 62 Shen L, Luo M, Huang L, Feng P, Wu L. Inorg Chem, 2015, 54: 1191-1193
- 63 Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P. Angew Chem Int Ed, 2016, 55: 4938–4942
- 64 Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M. J Phys Chem C, 2012, 116: 20848–20853
- 65 Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ. Angew Chem Int Ed, 2012, 51: 7440-7444
- 66 Xiao JD, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu SH, Jiang HL. Angew Chem Int Ed, 2016, 55: 9389–9393
- 67 Tilgner D, Kempe R. Chem Eur J, 2017, 23: 3184–3190
- 68 Xiao JD, Han L, Luo J, Yu SH, Jiang HL. Angew Chem Int Ed, 2018, 57: 1103-1107
- 69 Sun X, Yu Q, Zhang F, Wei J, Yang P. Catal Sci Technol, 2016, 6: 3840-3844
- 70 Zhen W, Ma J, Lu G. Appl Catal B-Environ, 2016, 190: 12-25
- 71 Zhen W, Gao H, Tian B, Ma J, Lu G. ACS Appl Mater Interfaces, 2016, 8: 10808-10819
- 72 He J, Yan Z, Wang J, Xie J, Jiang L, Shi Y, Yuan F, Yu F, Sun Y. Chem Commun, 2013, 49: 6761
- 73 Saha S, Das G, Thote J, Banerjee R. J Am Chem Soc, 2014, 136: 14845-14851
- 74 Wang Y, Zhang Y, Jiang Z, Jiang G, Zhao Z, Wu Q, Liu Y, Xu Q, Duan A, Xu C. Appl Catal B-Environ, 2016, 185: 307–314
- 75 Zhou JJ, Wang R, Liu XL, Peng FM, Li CH, Teng F, Yuan YP. Appl Surf Sci, 2015, 346: 278-283
- 76 Peters AW, Li Z, Farha OK, Hupp JT. ACS Appl Mater Interfaces, 2016, 8: 20675-20681
- 77 Su Y, Zhang Z, Liu H, Wang Y. Appl Catal B-Environ, 2017, 200: 448-457
- 78 Liu H, Zhang J, Ao D. Appl Catal B-Environ, 2018, 221: 433-442
- 79 Lin R, Shen L, Ren Z, Wu W, Tan Y, Fu H, Zhang J, Wu L. Chem Commun, 2014, 50: 8533
- 80 Shen L, Luo M, Liu Y, Liang R, Jing F, Wu L. Appl Catal B-Environ, 2015, 166-167: 445-453
- 81 Bu Y, Li F, Zhang Y, Liu R, Luo X, Xu L. RSC Adv, 2016, 6: 40560-40566
- 82 Bag PP, Wang XS, Sahoo P, Xiong J, Cao R. Catal Sci Technol, 2017, 7: 5113-5119
- 83 Zhao CW, Li YA, Wang XR, Chen GJ, Liu QK, Ma JP, Dong YB. Chem Commun, 2015, 51: 15906–15909
- 84 Wang R, Gu L, Zhou J, Liu X, Teng F, Li C, Shen Y, Yuan Y. Adv Mater Interfaces, 2015, 2: 1500037
- 85 Hong J, Chen C, Bedoya FE, Kelsall GH, O'Hare D, Petit C. Catal Sci Technol, 2016, 6: 5042–5051
- 86 Xu J, Gao J, Wang C, Yang Y, Wang L. Appl Catal B-Environ, 2017, 219: 101-108
- 87 Kataoka Y, Sato K, Miyazaki Y, Masuda K, Tanaka H, Naito S, Mori W. Energy Environ Sci, 2009, 2: 397-400

- 88 Kataoka Y, Miyazaki Y, Sato K, Saito T, Nakanishi Y, Kiatagwa Y, Kawakami T, Okumura M, Yamaguchi K, Mori W. Supramol Chem, 2011, 23: 287–296
- 89 Miyazaki Y, Kataoka Y, Mori W. J Nanosci Nanotech, 2012, 12: 439-445
- 90 Wang C, deKrafft KE, Lin W. J Am Chem Soc, 2012, 134: 7211-7214
- 91 Toyao T, Saito M, Dohshi S, Mochizuki K, Iwata M, Higashimura H, Horiuchi Y, Matsuoka M. Chem Commun, 2014, 50: 6779-6781
- 92 Pullen S, Fei H, Orthaber A, Cohen SM, Ott S. J Am Chem Soc, 2013, 135: 16997-17003
- 93 Hou CC, Li TT, Cao S, Chen Y, Fu WF. J Mater Chem A, 2015, 3: 10386–10394
- 94 Kim D, Whang DR, Park SY. J Am Chem Soc, 2016, 138: 8698-8701
- 95 Wu P, Guo X, Cheng L, He C, Wang J, Duan C. Inorg Chem, 2016, 55: 8153-8159
- 96 Zhou T, Du Y, Borgna A, Hong J, Wang Y, Han J, Zhang W, Xu R. Energy Environ Sci, 2013, 6: 3229–3234
- 97 Sasan K, Lin Q, Mao CY, Feng P. Chem Commun, 2014, 50: 10390-10393
- 98 Toyao T, Saito M, Dohshi S, Mochizuki K, Iwata M, Higashimura H, Horiuchi Y, Matsuoka M. Res Chem Intermed, 2016, 42: 7679–7688
- 99 Li Z, Xiao JD, Jiang HL. ACS Catal, 2016, 6: 5359-5365
- 100 Nasalevich MA, Becker R, Ramos-Fernandez EV, Castellanos S, Veber SL, Fedin MV, Kapteijn F, Reek JNH, van der Vlugt JI, Gascon J. Energy Environ Sci, 2015, 8: 364–375
- 101 Meyer K, Bashir S, Llorca J, Idriss H, Ranocchiari M, van Bokhoven JA. Chem Eur J, 2016, 22: 13894–13899
- 102 Liu XL, Wang R, Zhang MY, Yuan YP, Xue C. APL Mater, 2015, 3: 104403
- 103 Chen YF, Tan LL, Liu JM, Qin S, Xie ZQ, Huang JF, Xu YW, Xiao LM, Su CY. Appl Catal B-Environ, 2017, 206: 426-433
- 104 Jin Z, Yang H. Nanoscale Res Lett, 2017, 12: 539-549
- 105 Wu P, Jiang M, Li Y, Liu Y, Wang J. J Mater Chem A, 2017, 5: 7833-7838
- 106 Feng Y, Chen C, Liu Z, Fei B, Lin P, Li Q, Sun S, Du S. J Mater Chem A, 2015, 3: 7163-7169
- 107 Zhao J, Wang Y, Zhou J, Qi P, Li S, Zhang K, Feng X, Wang B, Hu C. J Mater Chem A, 2016, 4: 7174–7177
- 108 Wang Y, Yu Y, Li R, Liu H, Zhang W, Ling L, Duan W, Liu B. J Mater Chem A, 2017, 5: 20136–20140
- 109 Dong XY, Zhang M, Pei RB, Wang Q, Wei DH, Zang SQ, Fan YT, Mak TCW. Angew Chem Int Ed, 2016, 55: 2073–2077
- 110 Zhang ZM, Zhang T, Wang C, Lin Z, Long LS, Lin W. J Am Chem Soc, 2015, 137: 3197–3200
- 111 Kong XJ, Lin Z, Zhang ZM, Zhang T, Lin W. Angew Chem Int Ed, 2016, 55: 6411-6416
- 112 Guo W, Lv H, Chen Z, Sullivan KP, Lauinger SM, Chi Y, Sumliner JM, Lian T, Hill CL. J Mater Chem A, 2016, 4: 5952–5957
- 113 Hu XL, Sun CY, Qin C, Wang XL, Wang HN, Zhou EL, Li WE, Su ZM. Chem Commun, 2013, 49: 3564–3566
- 114 Wang G, Sun Q, Liu Y, Huang B, Dai Y, Zhang X, Qin X. Chem Eur J, 2015, 21: 2364–2367
- 115 Wang G, Liu Y, Huang B, Qin X, Zhang X, Dai Y. Dalton Trans, 2015, 44: 16238–16241
- 116 Horiuchi Y, Toyao T, Miyahara K, Zakary L, Van DD, Kamata Y, Kim TH, Lee SW, Matsuoka M. Chem Commun, 2016, 52: 5190-5193
- 117 Chi L, Xu Q, Liang X, Wang J, Su X. Small, 2016, 12: 1351-1358
- 118 Paille G, Gomez-Mingot M, Roch-Marchal C, Lassalle-Kaiser B, Mialane P, Fontecave M, Mellot-Draznieks C, Dolbecq A. J Am Chem Soc, 2018, 140: 3613–3618
- 119 An Y, Liu Y, An P, Dong J, Xu B, Dai Y, Qin X, Zhang X, Whangbo MH, Huang B. Angew Chem Int Ed, 2017, 56: 3036–3040
- 120 Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. Angew Chem Int Ed, 2012, 51: 3364-3367
- 121 Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Chem Eur J, 2013, 19: 14279–14285
- 122 Sun D, Liu W, Qiu M, Zhang Y, Li Z. Chem Commun, 2015, 51: 2056-2059
- 123 Lee Y, Kim S, Kang JK, Cohen SM. Chem Commun, 2015, 51: 5735-5738
- 124 Wang D, Huang R, Liu W, Sun D, Li Z. ACS Catal, 2014, 4: 4254-4260
- 125 Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL. J Am Chem Soc, 2015, 137: 13440–13443
- 126 Liu Y, Yang Y, Sun Q, Wang Z, Huang B, Dai Y, Qin X, Zhang X. ACS Appl Mater Interfaces, 2013, 5: 7654–7658
- 127 Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Angew Chem Int Ed, 2016, 55: 14310–14314
- 128 Aziz A, Ruiz-Salvador AR, Hernández NC, Calero S, Hamad S, Grau-Crespo R. J Mater Chem A, 2017, 5: 11894–11904
- 129 Chen D, Xing H, Wang C, Su Z. J Mater Chem A, 2016, 4: 2657-2662
- 130 Luo T, Zhang J, Li W, He Z, Sun X, Shi J, Shao D, Zhang B, Tan X, Han B. ACS Appl Mater Interfaces, 2017, 9: 41594–41598

- 131 Wang S, Yao W, Lin J, Ding Z, Wang X. Angew Chem Int Ed, 2014, 53: 1034–1038
- 132 Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM. Inorg Chem, 2015, 54: 6821-6828
- 133 Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M. ChemSusChem, 2015, 8: 603–608
- 134 Zhao J, Wang Q, Sun C, Zheng T, Yan L, Li M, Shao K, Wang X, Su Z. J Mater Chem A, 2017, 5: 12498–12505
- 135 Lee Y, Kim S, Fei H, Kang JK, Cohen SM. Chem Commun, 2015, 51: 16549–16552
- 136 Wang C, Xie Z, deKrafft KE, Lin W. J Am Chem Soc, 2011, 133: 13445-13454
- 137 Kajiwara T, Fujii M, Tsujimoto M, Kobayashi K, Higuchi M, Tanaka K, Kitagawa S. Angew Chem Int Ed, 2016, 55: 2697-2700
- 138 Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM. J Am Chem Soc, 2017, 139: 356– 362
- 139 Zhang S, Li L, Zhao S, Sun Z, Hong M, Luo J. J Mater Chem A, 2015, 3: 15764–15768
- 140 Zhang S, Li L, Zhao S, Sun Z, Luo J. Inorg Chem, 2015, 54: 8375-8379
- 141 Ryu UJ, Kim SJ, Lim HK, Kim H, Choi KM, Kang JK. Sci Rep, 2017, 7: 612
- 142 Huang R, Peng Y, Wang C, Shi Z, Lin W. Eur J Inorg Chem, 2016, 2016: 4358-4362
- 143 Liu Q, Low ZX, Li L, Razmjou A, Wang K, Yao J, Wang H. J Mater Chem A, 2013, 1: 11563–11569
- 144 Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang HL, Jiang J, Zhang Q, Xie Y, Xiong Y. Adv Mater, 2014, 26: 4783–4788
- 145 Wang S, Wang X. Appl Catal B-Environ, 2015, 162: 494-500
- 146 Wang M, Wang D, Li Z. Appl Catal B-Environ, 2016, 183: 47-52
- 147 Yan S, Ouyang S, Xu H, Zhao M, Zhang X, Ye J. J Mater Chem A, 2016, 4: 15126–15133
- 148 Crake A, Christoforidis KC, Kafizas A, Zafeiratos S, Petit C. Appl Catal B-Environ, 2017, 210: 131-140
- 149 Maina JW, Schütz JA, Grundy L, Des Ligneris E, Yi Z, Kong L, Pozo-Gonzalo C, Ionescu M, Dumée LF. ACS Appl Mater Interfaces, 2017, 9: 35010–35017
- 150 Shi L, Wang T, Zhang H, Chang K, Ye J. Adv Funct Mater, 2015, 25: 5360-5367
- 151 Wang S, Lin J, Wang X. Phys Chem Chem Phys, 2014, 16: 14656-14660
- 152 Liu S, Chen F, Li S, Peng X, Xiong Y. Appl Catal B-Environ, 2017, 211: 1-10
- 153 Khaletskaya K, Pougin A, Medishetty R, Rösler C, Wiktor C, Strunk J, Fischer RA. Chem Mater, 2015, 27: 7248–7257
- 154 Wang S, Guan BY, Lu Y, Lou XW. J Am Chem Soc, 2017, 139: 17305-17308
- 155 deKrafft KE, Wang C, Lin W. Adv Mater, 2012, 24: 2014-2018
- 156 Mondal I, Pal U. Phys Chem Chem Phys, 2016, 18: 4780-4788
- 157 Xiao JD, Jiang HL. Small, 2017, 13: 1700632
- 158 Lan M, Guo RM, Dou Y, Zhou J, Zhou A, Li JR. Nano Energy, 2017, 33: 238-246
- 159 Lan Q, Zhang ZM, Qin C, Wang XL, Li YG, Tan HQ, Wang EB. Chem Eur J, 2016, 22: 15513–15520
- 160 Chen Y, Wang D, Deng X, Li Z. Catal Sci Technol, 2017, 7: 4893-4904
- 161 Yu X, Wang L, Cohen SM. CrystEngComm, 2017, 19: 4126-4136
- 162 Wang W, Xu X, Zhou W, Shao Z. Adv Sci, 2017, 4: 1600371
- 163 Maina JW, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée LF. Mater Horiz, 2017, 4: 345-361
- 164 Wang H, Zhu QL, Zou R, Xu Q. Chem, 2017, 2: 52-80
- 165 Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KCW, Yamauchi Y. Adv Mater, 2017, 29: 1604898
- 166 Li Y, Xu H, Ouyang S, Ye J. Phys Chem Chem Phys, 2016, 18: 7563-7572
- 167 Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ. Coordin Chem Rev, 2016, 307: 237-254
- 168 Dhakshinamoorthy A, Asiri AM, García H. Angew Chem Int Ed, 2016, 55: 5414-5445
- 169 Babu VJ, Vempati S, Uyar T, Ramakrishna S. Phys Chem Chem Phys, 2015, 17: 2960-2986
- 170 Wang S, Wang X. Small, 2015, 11: 3097-3112
- 171 Huang G, Chen Y, Jiang H. Acta Chim Sin, 2016, 74: 113-129
- 172 Yang Q, Xu Q, Jiang HL. Chem Soc Rev, 2017, 46: 4774-4808
- 173 Jiao L, Wang Y, Jiang HL, Xu Q. Adv Mater, 2017, 112: 1703663

- 174 Zhu J, Li PZ, Guo W, Zhao Y, Zou R. Coordin Chem Rev, 2018, 359: 80-101
- 175 Liang Z, Qu C, Xia D, Zou R, Xu Q. Angew Chem Int Ed, 2018, doi: 10.1002/anie.201800269
- 176 Fang X, Shang Q, Wang Y, Jiao L, Yao T, Li Y, Zhang Q, Luo Y, Jiang HL. Adv Mater, 2018, 30: 1705112
- 177 Liu H, Xu C, Li D, Jiang HL. Angew Chem Int Ed, 2018, 57: 5379-5383

Metal-organic frameworks for photocatalysis

Juan-Ding Xiao^{1,2}, Dandan Li¹, Hai-Long Jiang^{1*}

¹ Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center

of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

² Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei 230031,

China

*Corresponding author (email: jianglab@ustc.edu.cn)

Abstract: As a relatively new class of crystalline porous materials, metal-organic frameworks (MOFs) possess high porosity, large BET surface area, and structural diversity and tailorability. Many MOFs feature semiconductor-like behavior, and their crystalline/perfect structures inhibit the recombination of photogenerated electron-hole pairs. Moreover, the porous structure of MOFs greatly facilitates the rapid utilization of charge carriers. Therefore, MOFs have earned more and more interest toward photocatalysis in recent years. In this review, we summarize recent progress of MOF-based catalysts for diverse photocatalytic reactions, including dye degradation, organic transformation, hydrogen production by water splitting, water oxidation, as well as carbon dioxide reduction, etc. In addition, the photocatalysis over MOF-pyrolyzed derivatives have been briefly introduced as well. Finally, the further development and challenge in MOF photocatalysis are discussed.

Keywords: metal-organic frameworks, photocatalysis, water splitting, carbon dioxide reduction, organic transformations

doi: 10.1360/N032018-00035